

Investigation of transportation mode choice for domestic freight movements in India

Authors: Sowjanya Dhulipala, Gopal R. Patil

Presented by

Sowjanya Dhulipala

PhD Student IIT Bombay, Mumbai, India Email: sowjanyad@iitb.ac.in

Transport system in India

- India, one of the largest economies in the world, consists of a transport system comprising different modes such as rail, road, coastal shipping, inland waterways, pipelines, and air transport.
- Rail and road transport are dominating by carrying around 87% of the total freight traffic in the country.

Indian freight industry & mode share

- Many inefficiencies despite policy reforms and investments over the transportation sector
- Nearly 14% of its GDP is spent on logistics and transportation
- Share of freight/cargo transported by rail has declined from over 85% in the 1950s to 29% at present.
- This trend, if unattended, leads to unsustainability

Aim of this study

- There are minimal studies on freight transportation in India—most of them focussing on freight generation and at urban or port level.
- This study aimed to understand the factors influencing transport mode choice for domestic freight movements in India
- Shipper/freight forwarder survey—Revealed preference (RP) to identify their preferences and modal performance
- Scope: Road and rail modes, shipments transported within the country

Complexity involved in mode choice decisions

Decentralised freight industry

- Unorganised and highly fragmented with small and medium sized players dispersed across regions
- Private truck owners with very less fleet size

Data collection

- Shippers and freight-forwarders in Mumbai and Navi Mumbai were personally met and interviewed.
- Origins and destinations spread all over the country, as the companies are operating at a national and international level; 32 O-D pairs across the country
- Primarily, the shipment information comprises origin, destination, type of commodity transported, transit time, transport cost, mode of transport chosen.
- Due to complex nature of mode choice, it is challenging to collect the data from Indian freight sector

Shipper Characteristics

- More than 60% of the companies studied have more than 500 employees
- More than 80% of the companies studied have a turn over more than 100 crores (~13.5 million USD)
- More than 60% companies have own vehicles for transport
- Commodities transported by road: Machinery, FMCG, FMCD, pharmaceuticals, automotive parts, computer peripherals, cement, steel, etc.
- Commodities transported by rail: Salt, steel, cement, clinker, computer peripherals, Agro products, etc.

Factors influencing transport mode choice

- Various types of attributes were observed to influence the choice of mode:
 - Mode characteristics,
 - Commodity characteristics, and
 - Locational characteristics.
- Mode characteristics: Transport cost, transit time, and travel time reliability—more important compared to others
- The nature of commodity plays an important role in choosing the mode as it decides the importance of transit time: very important for a perishable good and less important for a non-perishable good.
- The locational attributes such as availability of mode at places of origin and destination also play an important role.

Factors influencing transport mode choice

Importance of mode attributes on the scale of 1-10 (10 = extremely important, 1 = extremely unimportant)

Performance of road and rail as per shippers/freight forwarders

Performance of road and rail on the scale of 1-10 (10 = extremely important, 1 = extremely unimportant)

Mode choice model

- Binary logit model is developed
- Modes: Road, Rail
- Utility functions:

$$U(Road) = asc_{road} + tt \times TT + tc \times TCKM + dt * ln(DIST)$$
$$U(Rail) = tt \times TT + tc \times TCKM$$

 Where TT = Transport time in hours; TCKM = Transport cost per In(DIST); DIST = Distance between Origin and Destination in km

Model summary

```
Log likelihood function = -119.25; Constants only -183.8638
Estimation based on N = 488, K = 4; Inf.Cr.AIC = 246.5 AIC/N = 0.505 R-sqrd = 0.351; R2Adj = 0.346
Chi-squared[3] = 129.20830
Prob [ chi squared > value ] = .00000
```

	Coefficient	Std. Error	Z	Prob. z >Z*
asc _{road}	8.002***	1.470	5.44	< 0.000
TT	-0.237***	0.048	-4.89	< 0.000
TCKM	-0.091**	0.042	-2.17	0.030
ln(DIST)	-5.093***	0.917	-5.55	< 0.000

Note: ***, **, * ==> Significance at 1%, 5%, 10% level

Prediction accuracy

	Predicted				
Actual		Road	Rail	Total	
	Road	387	40	427	
	Rail	40	21	61	
	Total	427	61	488	

- Overall prediction accuracy: 83.60%
- Prediction accuracy of rail shipments: 34.42%

Factors discouraging the choice of rail mode

- Mostly, rail can carry bulk goods in containers and automobiles
- Necessity of a full rake load
- Rail is not flexible, fixed schedules
- Long advanced booking times
- Lack of first mile and last mile connectivity
- Handling charges, Pilferage, damages
- Nature of commodity; special and over dimensional cargo may not be suitable for rail
- Geography
- Bureaucracy is a problem

Thank you