# Analysis of Overtaking Manoeuvres on Freight Corridors considering Road and Vehicle Parameters

Parth Deshpande<sup>1</sup> Abhishek Raj<sup>2</sup> Bhargava Rama Chilukuri<sup>2</sup> Shankar C. Subramanian<sup>1</sup>

<sup>1</sup>Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India, 600036 <sup>2</sup>Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India, 600036

7<sup>th</sup> International Workshop on Sustainable Road Freight
October 2020



## Outline

- 1. Introduction
- 2. Relevant PSD models
- 3. Research Objectives
- 4. PSD Test Runs in IPG TruckMaker ®
- 5. Analytical Model for Overtaking
- 6. Extended Work and Results
- 7. Conclusion
- 8. References



## Introduction

- Upcoming freight corridors in India:
  - 60% of the freight movement in India is currently carried out on road networks.
  - It is intended to increase the freight load from 40% on National highways (NHs) to 70%.
- Geometric design needs revision for emerging vehicular technology.
- Passing Sight Distance (PSD):
  - Enhanced safety and efficiency in terms of road usage as well as vehicle energy usage.
  - Potential use in Advanced Driver Assistance Systems (ADAS) – passing collision warning.
  - Existing standards are designed only for cars and do not consider road and vehicle dynamics.



Figure: Components of PSD [AASHTO, 1954]



## Relevant PSD Models

- Harwood and Glennon (1976)
  - One of the first to define PSD by considering aborted and completed pass.
- Indian Roads Congress (IRC 66:1976)
  - Design standards conceptually based on AASHTO's older model, but does not consider clearance distance at the end of the manoeuvre.
- Liebermann (1982)
  - Included performance capabilities of vehicles but assumed a constant speed differential.
- Glennon (1988)
  - Replicated actual passing manoeuvres by mathematical extensions of previous works.
  - Considered the critical position, where chances of abortion and completion are equal.
  - Widely used in current AASHTO standards.
- Harwood and Glennon (1989)
  - Obtained the minimum PSD required for different vehicle classes.
- Hassan et al. (1996)
  - Proposed a revised model based on fewer assumptions but was difficult to calibrate.



# Research Objectives

#### Drawbacks of existing models:

- Scope majorly restricted to passenger cars.
- Only lengths of trucks considered by Harwood & Glennon (1989).
- Only basic vehicle kinematic parameters considered with multiple assumptions.
- Road and vehicle parameters have not been considered in design.
- There is still no agreement on vehicle classes for design of PSD.
- No consideration of electric powertrains and freight corridors has been done for PSD.

### Objectives:

- Evaluation of present PSD models in practice (Glennon's and IRC) in IPG TruckMaker ®.
- Analysis of the impact of road parameters such as gradients and vehicle characteristics such
  as vehicle type, vehicle speed and vehicular technology (IC Engine vs Electric) on PSD.
- Proposal of analytical model based on vehicle dynamics and microscopic behaviour.
- Extension of the present study to consider slow-moving vehicles in an adjacent lane.



# PSD Test Runs in IPG TruckMaker ®

#### **Road and Driver Parameters:**

- Number of lanes, n = 2.
- Lane width = 3.5 m.
- Overtaking rate = 1.

#### **Leader Vehicle (Impeder)**

- Type 2-S1 truck (IRC).

#### **Subject Vehicle (Passer)** – Type 2 truck (IRC):

- Wheelbase of the passing vehicle = 2.55 m.
- Distance of CoG from front and rear axles = 2.023 m and 1.677 m respectively.
- Unladen mass of the passing vehicle = 6,488 kg.
- Front tyre cornering stiffness = 1,76,920 N/rad/tyre.
- Rear tyre cornering stiffness = 1,65,130 N/rad/tyre, double tyres.



Figure: Minimum PSD

Note: d<sub>3</sub> is ignored due to absence of oncoming vehicle in case of divided highways.



# PSD Test Runs in IPG TruckMaker ®

Table: Comparison of PSD from IPG-TM, Glennon's Model and IRC standards

| Subject<br>Truck<br>Speed<br>(V, km/h) | Speed<br>differential<br>( <i>m</i> , km/h) | Minimum PSD from Glennon's Model (d <sub>1</sub> + d <sub>2</sub> , m) | PSD from IRC<br>standards<br>(m) | Minimum<br>PSD from<br>IPG-TM (m) | Percentage<br>Difference in<br>Glennon PSD<br>(w.r.t TM, %) | Percentage<br>Difference in<br>IRC PSD<br>(w.r.t TM, %) |
|----------------------------------------|---------------------------------------------|------------------------------------------------------------------------|----------------------------------|-----------------------------------|-------------------------------------------------------------|---------------------------------------------------------|
| 40                                     | 10.07                                       | 182.2                                                                  | 165.0                            | 331.6                             | 45.1                                                        | 50.2                                                    |
| 50                                     | 9.57                                        | 270.5                                                                  | 235.0                            | 460.3                             | 41.2                                                        | 48.9                                                    |
| 60                                     | 9.07                                        | 378.4                                                                  | 300.0                            | 606.1                             | 37.6                                                        | 50.5                                                    |
| 70                                     | 8.57                                        | 509.6                                                                  | 385.0                            | 788.4                             | 35.4                                                        | 51.2                                                    |
| 80                                     | 8.07                                        | 669.2                                                                  | 470.0                            | 997.3                             | 32.9                                                        | 52.9                                                    |

- Length of subject truck  $(L_p) = 6$  m.
- Length of leader truck  $(L_i) = 14.7$  m.
- Despite consideration of oncoming vehicle in IRC standards with an additional component, the values are lower than IPG-TM PSD values.



# PSD Test Runs in IPG TruckMaker ®

#### Table: PSD with Longitudinal Gradient

| Subject<br>Truck<br>Speed<br>(V , km/h ) | Speed<br>differential<br>(m, km/h) | Longitudinal<br>Gradient (%) | Min. PSD from<br>IPG-TM (m) | Percentage<br>Difference in<br>Glennon<br>PSD (w.r.t TM,<br>x% Gradient) |
|------------------------------------------|------------------------------------|------------------------------|-----------------------------|--------------------------------------------------------------------------|
| 80                                       | 8.07                               | 2                            | 1020.4                      | 34.4                                                                     |
|                                          |                                    | 4                            | 1091.7                      | 38.7                                                                     |
|                                          |                                    | 6                            | 1527.2                      | 56.2                                                                     |

#### Table: PSD with Changes in Loading

|                                        |                                    |                    | _                               | •                                                                |
|----------------------------------------|------------------------------------|--------------------|---------------------------------|------------------------------------------------------------------|
| Subject<br>Truck<br>speed (V,<br>km/h) | Speed<br>differential<br>(m, km/h) | Loading            | Min. PSD<br>from IPG-<br>TM (m) | Percentage difference<br>in Glennon's PSD for<br>load change (%) |
| 80                                     | 8.07                               | 6488 kg<br>(min.)  | 997.3                           | 52.9                                                             |
|                                        |                                    | 16200 kg<br>(max.) | 1476.2                          | 54.7                                                             |

#### Table: PSD with Electric Truck

| Subject<br>Truck Speed<br>(V, km/h) | Speed<br>differential<br>( <i>m</i> , km/h) | Min. PSD<br>from<br>Glennon's<br>Model<br>(d <sub>1</sub> + d <sub>2</sub> , m) | Min. PSD<br>from IPG-TM<br>(m) | Percentage<br>Difference<br>(w.r.t TM, %) |
|-------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|
| 40                                  | 10.07                                       | 182.2                                                                           | 455.3                          | 60.0                                      |
| 50                                  | 9.57                                        | 270.5                                                                           | 615.4                          | 56.0                                      |
| 60                                  | 9.07                                        | 378.4                                                                           | 797.2                          | 52.5                                      |
| 70                                  | 8.57                                        | 509.6                                                                           | 1005.7                         | 49.3                                      |
| 80                                  | 80 8.07                                     |                                                                                 | 1427.0                         | 53.1                                      |



# Analytical Model for d<sub>2</sub>

- Trajectory constraint on passing distance:
  - Cubic polynomial trajectory curvature:

$$K_{max} = \left| \frac{-6y_p}{(x_p)^2} \right|. \tag{1}$$

- $K_{max}$  depends on the vehicle's steering angle limit, lateral traction available and the maximum allowable lateral acceleration (tuned parameter).
- Gap constraint on passing distance:
  - Minimum gap to be maintained based on Forbes model:

$$d_X = r_t v + L_i. (2)$$

- Overtaking should be completed in accordance with this maintained gap.
- Passing distance is calculated using the length of the cubic polynomial trajectory.
- d<sub>2</sub> is taken as the maximum of these values.
- More details in Deshpande et al. (2020) and Yang et al. (2018)



# **Analytical Model Results**

Table: Results of Analytical Model

| Subject Truck Speed (v, km/h) | Speed<br>differential<br>( <i>m</i> , km/h) | PSD d <sub>2</sub> from<br>Analytical<br>Model (m) | PSD d <sub>2</sub> from IPG-TM (m) | Percentage<br>Difference in d <sub>2</sub><br>values (%) |
|-------------------------------|---------------------------------------------|----------------------------------------------------|------------------------------------|----------------------------------------------------------|
| 40                            | 10.07                                       | 270.4                                              | 284.8                              | 5.1                                                      |
| 50                            | 9.57                                        | 392.4                                              | 403.1                              | 2.6                                                      |
| 60                            | 9.07                                        | 546.4                                              | 545.0                              | 0.3                                                      |
| 70                            | 8.57                                        | 737.7                                              | 713.0                              | 3.5                                                      |
| 80                            | 8.07                                        | 973.4                                              | 913.0                              | 6.6                                                      |

- Lateral acceleration = 0.5 m/s<sup>2</sup>
- Reaction time for headway spacing = 1.5 s (Forbes model)



# Extended Work – Slow-moving Vehicle as an Impeder

- Previous studies have not considered PSD in design for divided highways.
- Slow-moving vehicles in adjacent lanes require consideration similar to PSD for oncoming vehicles on two-lane undivided highways.
- Raj et al. (TRB 2021) have studied the shortfalls in the existing models for critical PSD for two-lane highways:
  - Developed an analytical model to study microscopic behaviour;
  - Used a vehicle trajectory approach to obtain PSD.

The Overtaking Distance (OD) in this scenario is given by  $x_p$ , which is the longitudinal distance required for the reverse lane change from the critical point.

 Based on minimum distance required for passing, considering trajectory curvature and safe gaps.





Figure: Slow-moving Vehicle in Adjacent Lane

- Length of overtaking trajectory for gap constraints:
  - Cubic polynomial length:

$$L_{total} = \int_0^{x_p} \sqrt{1 + \left(x \frac{6y_p}{x_p^2} - x^2 \frac{6y_p}{x_p^3}\right)^2} dx.$$

(3)



## **Extended Results**

Table: Overtaking Distance Results for Slow-Moving Vehicle

| Subject<br>Truck<br>Speed<br>(V, km/h) | Speed<br>differential<br>( <i>m</i> , km/h) | OD from<br>modified<br>Glennon's CP<br>model<br>(m) | OD from<br>IPG-TM (m) | OD from<br>analytical<br>model (m) | Percentage<br>diff. In mod.<br>Glennon OD<br>w.r.t TM (%) | Percentage<br>diff. in<br>analytical OD<br>w.r.t TM (%) |
|----------------------------------------|---------------------------------------------|-----------------------------------------------------|-----------------------|------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|
| 40                                     | 10.07                                       | 110.2                                               | 52.5                  | 58.8                               | 109.9                                                     | 12.0                                                    |
| 50                                     | 9.57                                        | 172.8                                               | 64.8                  | 73.5                               | 166.7                                                     | 13.4                                                    |
| 60                                     | 9.07                                        | 250.3                                               | 76.7                  | 88.2                               | 226.3                                                     | 15.0                                                    |
| 70                                     | 8.57                                        | 345.4                                               | 118.5                 | 126.3                              | 191.5                                                     | 6.6                                                     |
| 80                                     | 8.07                                        | 463.6                                               | 129.3                 | 144.0                              | 258.5                                                     | 11.4                                                    |

- Length of subject truck  $(L_p) = 6$  m
- Length of leader truck  $(L_i) = 14.7 \text{ m}$
- Length of slow-moving truck in adjacent lane  $(L_a) = 14.7$  m.



## Conclusion

- This research analysed PSD in from the perspective of freight corridors and proposed the use of analytical models to aid the development of standards.
- As compared to IPG Truckmaker ®, differences of more than 50% were observed in PSD values obtained from Glennon's model and IRC standards.
- Road and vehicle characteristics such as gradient, loading and powertrain have considerable effect on PSD and should be considered for freight corridor design.
- An analytical model is closer to the values from IPG TruckMaker ®:
  - Physical basis as well as calibrated parameters such as lateral acceleration.
- Adequate PSD increases average vehicle speeds, and thus logistic efficiency.

## Future scope:

- Development of an analytical model for  $d_1$  with vehicle powertrain dynamics.
- Adoption of the analytical model for ADAS.



## References

- AASHTO Policy on Geometric design of Highways and Streets. American Association of State Highway and Officials, Transportation, 1954.
- T. Forbes, "Human factor considerations in traffic flow theory, "Transportation Research Record, vol. 1195, pp. 60–66, 1963.
- Van Valkenburg, G. W., & Michael, H. L. (1971). Criteria for no-passing zones (No. FHWA/IN/JHRP-71/03).
- Harwood, D. W., & Glennon, J. C. (1976). Framework for design and operation of passing zones on two-lane highways. *Transportation research record*, 601, 45-50.
- Indian Roads Congress, IRC 66:1976(en) Recommended practice for sight distance on rural highways, 1976.
- Lieberman, E. B. (1982). Model for calculating safe passing distances on two-lane rural roads. Transportation Research Record, (869).
- Indian Roads Congress, IRC 3:1983(en) Dimensions and weights of road design vehicles, 1983.
- Glennon, J. C. (1988). New and improved model of passing sight distance on two-lane highways. *Transportation Research Record*, 1195, 132-137.
- Harwood, D. W., & Glennon, J. C. (1989). Passing sight distance design for passenger cars and trucks. *Transportation Research Record*, 1208, 59-69.
- Hassan, Y., Easa, S. M., & Abd El Halim, A. O. (1996). Passing sight distance on two-lane highways: Review and revision. *Transportation research part A: policy and practice*, 30(6), 453-467.
- Harwood, D. W. (2003). Review of truck characteristics as factors in roadway design (Vol. 505). Transportation Research Board.
- Harwood, D. W., Gilmore, D. K., & Richard, K. R. (2010). Criteria for passing sight distance for roadway design and marking. Transportation research record, 2195(1), 36-46.
- A policy on geometric design of highways and streets. American Association of State Highway and Officials, Transportation, 2011.
- Indian Roads Congress, IRC SP:73-2015(en) Manual of specifications and standards for two-laning of highways with paved shoulder (first revision), 2015.
- D. Yang, S. Zheng, C. Wen, P. J. Jin, and B. Ran, "A dynamic lane-changing trajectory planning model for automated vehicles, "Transportation Research Part C: Emerging Technologies, vol. 95, pp. 228 247, 2018.
- NITI Aayog and Rocky Mountain Institute, Goods on the Move: Efficiency & Sustainability in Indian Logistics, 2018.
- P. Deshpande, R. Amrutsamanvar, and S. C. Subramanian, "Vehicle path generation and tracking in mixed road traffic," IFAC-PapersOnLine, vol. 53, no. 1, pp. 524 529, 2020.
- A. Raj, P. Deshpande, B. R. Chilukuri, S. C. Subramanian, "Analysis of Passing Sight Distance for a Two-Lane Highway Using Vehicle Dynamics Simulation", Annual Meeting of the Transportation Research Board, 2021 (accepted)

