

Simulating supermarket home deliveries in Cambridge: A whole system view

Dr. Adam Gripton
SRF International Conference
October 2020

"A whole system view"

- Global climate crisis
- Transport sector emissions
- Step change in EV uptake

Progress reducing emissions in the UK has been imbalanced

Future infrastructure for EVs

Popularity of online shopping

Green delivery operations

Virtual living lab

- Past no longer good predictor of future
- Huge capital costs for physical field test
- Computer modelling of decision-making agents

But it needs data...

- Supermarkets "can do this ourselves"...?
 - Limited by own budget
 - Costly to build dedicated infrastructure
- System-wide solutions
 - Local authority engagement
 - Strategic policy planning
- So → simulate all consumer behaviour
 - By demanding order data from everyone???

Consumer behaviour survey

Cl.	Description	Resp.			
1	Willing but Struggling	256			
2	Online Omnivores	284			
3	Committed and Old School	288			
4	Middle Ground	349			
5	Fiercely Resisting and Responsible	142			
6	Uncaring Pragmatists	275			
7	Aspiring Techno Lovers	317			
8	Intensive Urbanites	121			

Encodes:

- Supermarket preference
- Order frequency
- Delivery/collection
- Order size
- Times of day, etc...

- Good characterisation of behaviour
- "Only" need to predict cluster distribution in area

Consumer behaviour survey

CI.	Description	Resp.		
1	Willing but Struggling	256		
2	Online Omnivores	284 288		
3	Committed and Old School			
4	Middle Ground	349		
5	Fiercely Resisting and Responsible	142		
6	Uncaring Pragmatists	275		
7	Aspiring Techno Lovers	317		
8	Intensive Urbanites	121		

Waitrose orders in Cambridge

Look like this:

We need this:

ONS small area classifications

- 232296 output areas (OAs)
- Hierarchical:
 - OAC1: 8 classes(1, 2, 3...)
 - OAC2: 26 classes(1a, 1b, ...)
 - OAC3: 76 classes(1a1, 1a2, ...)

ONS small area classifications

Waitrose orders in Cambridge

 Idea: find "best fit" cluster proportions that match order data most closely

Interpreting survey responses

- Q15: "How often do you buy any type of groceries online from the following retailers?"
- Q18a: "Please tell us how frequently you use [home delivery] when you purchase groceries online."

Likert scale	Frequency	Interpreted annual orders
1	Never	0
2	Less than once a month	4
3	2-3 times a month	20
4	Around once a week	52
5	More than once a week	80
6	Every day	250

Resp	Supermarket
2	Asda
3	Iceland
4	Morrison's
6	Sainsburys
7	Tesco
8	Waitrose

Observed in order data

Simultaneous equations

- Taking OAC2 as an example:
- Let $M_{21}, M_{22}, ..., M_{28}$ be the eight cluster proportions that an OAC2 area comprises
- Let $R_1, R_2, ..., R_8$ be the predicted annual orders from each cluster from the survey
- Then:
 - $M_{21} + M_{22} + \dots + M_{28} = 1$
 - $M_{2j} \in [0,1]$
 - $R_1 M_{21} + R_2 M_{22} + \dots + R_8 M_{28} \approx O_2$
- Orders normalised over all areas so total order numbers agree

M	C1	C2	C3	C4	C5	C6	C7	C8		0
OAC1	.25	.01	.01	.23	.23	.02	.03	.22		11
OAC2	.03	.21	.21	.05	.05	.20	.19	.06	>	13
OAC3	.07	.18	.18	.08	.08	.17	.16	.09		25
OAC4			.10	.14	.14	.12	.12	.13		62
OAC5	.12	.13	.13	.11	.11	.15	.15	.10		91
OAC6	.16	.09	.08	.17	.17	.07	.07	.18		4
OAC7	.19	.06	.05	.20	.20	.04	.04	.22		36
OAC8	.03	.22	.23	.02	.02	.24	.24	.00		17
R	0.2	0.8	3 5	0.01	1 2	2.6	0.3	6.1		

Estimated from survey

Annual orders from OAC2

Optimisation results

- Minimise discrepancy between predicted and observed orders
- Extra condition added to encourage overall cluster proportions to be similar to those predicted by the survey
- Coded in MATLAB using fmincon
- Good agreement with actual order densities (Waitrose) and relative cluster populations in Cambridge
- Now trained for Waitrose, can be used in an order generator for all other supermarkets

What do the results look like?

- Daily orders output from a Poisson process
- Uses 2011 census data to weight by occupied households for each postcode

CodePoint coordinates

Geo-location of postcodes turns daily postcode orders into whole-system map

Not considered yet: time of day, number of crates, ...

(...but adding these is straightforward now cluster definitions are set)

Thank you

Dr. Adam Gripton

a.gripton@hw.ac.uk

