

DYNAMICS AMONG PATHWAYS TO DECARBONIZE FREIGHT TRANSPORT SYSTEM

VERÔNICA GHISOLFI - UFRJ LÓRÁNT TAVASSZY — TU DELFT GONÇALO CORREIA — TU DELFT GISELE CHAVES - UFES GLAYDSTON RIBEIRO - UFRJ

OCTOBER 2020

Agenda

- ■Emissions and Decarbonization of Freight Transport
- Literature Review: Results and Gaps
- □ Conceptual Model: Feedbacks and Dynamics
- Conclusions

Figure 1 – Global Carbon Project. Source: Figueres et al. (2017)

Contribution of Freight Transport to Emissions

- ☐ 90% of all logistics emissions
- ☐ 7-8% of global CO₂ emissions
- ☐ Increase in freight tonne-km between 2015 and 2050

☐ Heavy dependence on fossil fuels

Figura 2 – Logistic Yard. Source: World Business Council for Sustainable Development, 2020.

Five measures for freight transport decarbonization

Reduce demand for freight transport

Shift to lower carbon transport modes

Optimize vehicle loading

Increase vehicle energy efficiency

Reduce carbon content of energy

30% modal shift road to rail

Rail improves energy efficiency by 50% and reduces carbon intensity of energy by 50%

20% improvement in routeing efficiency

30% increase in loading of laden vehicles

30% reduction in empty running

50% increase in energy efficiency

50% reduction in carbon intensity of the energy

83% reduction in carbon intensity

Is it achievable in 20 or 30 years?

What are the implicit dynamics?

Dynamics = Time Response

Interactions between multiple sectors/stakeholders

Systematic Literature Review of SD Models for Freight Transport Decarbonization

Figure 4 –Studies identification, selection and classification.

Results and Gaps

Figure 5 – Percentage of each decarbonization in the reviewed studies.

Table 1 – Classification according to Green logistics and TIMBER frameworks.

Decarbo	nization Stra	ategies			
(Green Logistics Framework)					

	(Green Logistics Framework)				
	Demand	Mode	Vehicle	Vehicle	Alternative
Authors	Reduction	Choice	Utilization	Efficiency	Fuels
Agha et al (2019)	х				
Aschauer (2013)			Х		
Azlan et al (2019)	х				
Barisa and Rosa (2018a)					Х
Barisa and Rosa (2018b)					Х
Brito Junior et al (2011)		Х			
Han and Hayashi		Х			
Piattelli et al (2002)		Х			
Purwanto et al (2011)		Х		Х	Х
Seitz (2014)				Х	
Seitz and Terzidis (2014)				Х	
Sim (2017)		Х	Х		Х
Yang et al (2018)				Х	

Ph.D. Goals Mapping

Literature Review

- Models of freight transport decarbonization
- Found gaps and research opportunities

Paper under Review

Conceptual Model

- Integrate five decarbonization measures
- Identify feedback loops and dynamic links

Paper to be submitted to RTBM

SD Model

- Data survey, interviews with stakeholders
- Model tests and scenarios simulations

Forward Ph.D. study

Freight

1) Economic instrument policies

2) Knowledge-based instruments

Conclusions

The main dynamic processes identified in the conceptual model:

- ☐ Economic, Legal and Knowledge-based instruments
 - Taxes, subsidies, vehicles restrictions, R&D and maturation of new technologies
- □ Changes in goods consumption according to consumer behavior
- □ Infrastructure investments
- ☐Fleet renewal process

Verônica Ghisolfi

COPPE- Alberto Luiz Coimbra Institute for Postgraduate Studies and Engineering Research

UFRJ – Federal University of Rio de Janeiro

https://www.linkedin.com/in/verônica-ghisolfi-021339b1/

ghisolfi@pet.coppe.ufrj.br

