

www.sustainableroadfreight.org

Impact of collaboration cluster formation on carbon and cost savings in Horizontal Collaboration

Pratyush Dadhich, Phil Greening and Christine Rutherford

7th International Workshop on Sustainable Road Freight

28-30 October, 2020

Introduction

- 30% of vehicle-kilometres are running empty and vehicles are utilised to only 61% of their weight capacity in the UK (Department of Transport, 2019)
- An effective way of improving vehicle utilisation is through horizontal collaboration among companies in road freight transport (Hingley et al. 2011, Rodrigues et al. 2015)
- Horizontal collaboration has potential for coalition gains up to 30% cost savings and up to 54% carbon savings in road freight transport (Guajardo et al., 2018; Vanovermeire et al., 2014; Lozano et al., 2013)
- 'Determining and Dividing gains' in horizontal collaboration of road freight transport (Cruijssen 2007, Lozano et al., 2013, Guajardo and Rönnqvist, 2015)

Research Focus:

- 1) Develop a framework to identify coordination costs of horizontal collaboration
- 2) Identify which coalition formations are likely to achieve the lowest cost and carbon emissions when the coordination costs are taken into account in the UK FMCG sector

Literature Review...

- Horizontal collaboration in the UK FMCG sector
 - Vertical collaboration is more common compared to horizontal collaboration
 - Companies are faced with increased complexities in their secondary distribution
- Cost and carbon allocation in horizontal collaboration
 - Lack of transparency caused collaborations to fail (Cruijssen et al., 2007)
 - Cooperative game theory (CGT) provides a framework which is relevant to study cost allocation problems.
 - CGT analyses
 - a set of possible outcomes
 - studies what participating organisations can achieve
 - which coalitions can form
 - how gains can be divided in coalitions
 - whether outcomes are robust, fair and stable (Nagarajan and Sošić, 2008)
 - Some studies have focussed on coalition formation and determining/dividing gains through CGT (Lozano et al., 2013; Guajardo and Rönnqvist, 2015; Jouida et al., 2017; Xu et al., 2017; Guajardo et al., 2018). CGT application in logistics:
 - Vanovermeire and Sörensen (2014) reward organisations in a collaboration that can provide flexibility in delivery time windows
 - Lozano et al., (2013) benefits shippers may achieve by merging their transport flows
 - Frisk et al., (2010) calculated transportation cost in backhaul of a collaborative forest transportation problem
 - Krajewska et al., (2008) analysed cost reduction opportunities that freight carriers can receive by forming a coalition

...Literature Review

- Allocation CO₂ emissions to cooperating partners (Naber et al., 2015; Zhu et al., 2016).
- CO₂ emissions are applied as a part of the cost function for carbon allocation (Özener, 2014; Niknamfar and Niaki, 2016; Sanchez et al., 2016).
- The Shapley value is the average marginal cost of participating players, if the participants are entered in a random order (Shapley, 1953). It aims to distribute the gains from coalition in a fair manner. Application of shapley value (Krajewska et al. 2008; Cruijssen et al. 2010; Frisk et al. 2010; Lozano et al. 2013; Vanovermeire and Sörensen 2014).
- However, many collaborations fail in real world and barriers limit scalability of collaboration.

Research Gap -

- As the size of a collaborative group grows, coordinating cooperation will become more difficult as coordination cost increased (Lozano et al., 2013; Guajardo et al., 2015)
- Less focus on coordination costs in literature which has the potential to outweigh any benefits from small sized companies

What are coordination costs?

- **Buyer Supplier:** In the case of a manufacturer—supplier dyad it might include *costs of exchanging information on products, price, availability, demand, as well as the costs to exchange design changes rapidly with the supplier (Um and Kim, 2019; Simatupang and Sridharan, 2005; Grover and Malhotra, 2003).*
- Outsourcing: Coordinating mechanisms may include sharing forecasts and schedules, using standardized information systems, and relying on personal or group communication and socialization (Handley and Banton, 2013; Dibbern et al., 2008; White and Lui, 2005). Coordination represent the time, effort, and resources the outsourcing organization expends to coordinate with the service provider effectively

Coordination Costs – Transaction Cost Economics

Identifying partners for collaboration

Development of contracts (Contractual and Relational)

- Sharing of resources (transport/warehouse)
- Sharing of Information
 - Data and IT systems
- Logistics administration
- Transport packaging and handling

Monitoring behaviour of companies

Standard solutions

Legal action costs

Methodology

Data Collection

- Data collected from 27 FMCG companies during a month in 2010 for a project called 'STARFISH'
- Origin and destination postcodes, the frequency of movements between origins and destinations, quantities moved, vehicles with carrying capacity and storage type

Data Analysis

- Average loads of 15 pallets or less, were extracted from the given dataset
- Cluster analysis was used to identify depots in close proximity within a radius of 35km to deliver to customers postcodes
- The transport costs for individual transport flows were calculated using a network design tool based on heuristics algorithm and linear programming
- The cost and carbon savings were generated by bundling of individual transport flows

Cost and Carbon Allocation Method

- Cost savings and carbon savings were identified, these cost savings were distributed among participating companies applying the 'Shapley Value'
- Incremental convex function applied to simulate coordination costs to identify coalition formation and cost gains

Shapley Value...?

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} rac{|S|! \; (n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

where

- $\phi_i(v)$ is the amount player i gets in coalition game
- N is a finite set of companies forming a grand coalition $(N = \{1, 2, ..., n\})$
- S is a set of coalitions in N
- $\frac{|S|!(|N|-1-|S|)!}{|N|!}$ is the possible ways a coalition can be formed
- $[v(s \cup \{i\}) v(s)]$ is the marginal contribution of player i in coalition N

Properties of Shapley value -

- **Efficiency** total value of the grand coalition should be allocated to the players
- 2) Individual Rationality players should be better off in a collaboration
- **Symmetry** if two players contribute the same to each coalition then the solution should treat them equally
- 4) **Dummy player** value should be zero
- **5)** Additivity values of two games sum up to the value computed for the sum of both games

Coordination Cost Calculation:

$$V(S) = CS(S) - CC(S)$$

Where

CS(S) = Coalition Savings

CC(s) = Coordination costs

Incremental Convex function:

$$f(S) = \alpha \frac{|\mathbf{s}|(|\mathbf{S}| - 1)}{(|\mathbf{S}| + 1)}$$

Coalition Formation and Cost Savings

Coalition Formation and Carbon Savings

Cost and carbon allocation of 6 FMCG companies

Company	Transport Costs (£)		Carbon Emissions	Carbon Allocation Savings (KgCO2e)	% relative cost savings	% relative carbon Savings
S1						
	£17,640	£5,340	28,223	6,530	36%	28%
S2						
	£18,042	£4,080	28,867	8,541	28%	36%
S3	£8,604	£2,160	13,767	3,463	15%	15%
S4	£5,919	£1,572	9,471	2,084	11%	9%
S5	£2,528	£1,296	4,045	2,515	9%	11%
S6	£1,628	£324	2,604	520	2%	2%
Total	54,361	14,772	86,977			

Coalition Formation and Coordination Costs

Coalition formation (including coordination costs)

Discussion and Conclusion

- Cost and carbon savings were achieved by each player in a grand coalition
- Grand coalition can provide 27% cost savings and 31% carbon savings without coordination costs
- Collaboration clusters are likely to form
- Sub-coalitions are likely to form when coordination costs are higher or equal to 20%

Future Work

- Survey to understand coordination costs of collaboration in a coalition
- Cost allocation in backhauling and multidrop deliveries with time windows

