7th International Workshop on Sustainable Road Freight Transport

Modeling Strategic and Operational Policy Decisions for EV Sharing Platforms

Vishal Bansal^a, Deepak Prakash^b, K.B. Devika^b, Debjit Roy^a, Shankar C. Subramanian^b

a: Indian Institute of Management Ahmedabad, India b: Indian Institute of Technology Madras, India

Motivation

Benefits of Electric Vehicles (EVs):

- Around 24% of CO₂ emissions are contributed to by the transportation section due to IC engine vehicles.
- EVs offer zero tailpipe emissions, better efficiency over IC engine vehicles, and reduces reliance on fuel.
- 17 countries have announced 100% zeroemission vehicle through 2050.

Adoption Issues and Motivation:

- In spite of advantages, penetration of EVs is very less (around 1% of global fleet of cars is electrified).
- Issues for adoption include
 - Range anxiety
 - Cost of EVs
 - Inadequate charging infrastructure
- Use of EV sharing platforms can help alleviate these issues.
- In India, in 2025, 17% of cars are expected to be sold to fleet owners, and the number of shared rides to increase by three times (from 2018).

Literature Review

Research stream	Study	EV-sharing platform	Station-based system	Charging levels	Traffic conditions	Vehicle dynamics	Powertrain and regenerative braking model
Performance analysis of vehicle- sharing platforms	George and Xia (2011), Roy et al. (2014)		Y				
	Chen et al. (2016), He et al. (2017), Guo et al. (2018), Loeb et al. (2018), Hua et al. (2019), He et al. (2020)	Y					
EV modeling	Shao et al. (2018)	Y				Y	
	Dandl and Bogenberger (2019)	Y		Y	Y		
	Alesiani and Maslekar (2014)	Y				Y	
	Chen et al. (2018)	Y		Y		Y	
Our work		Y	Y	Y	Y	Y	Y

Research Questions

- 1. How to integrate the vehicle and network dynamics with the optimization of design parameters of EV-sharing platform?
- 2. How to analyze the effect of different traffic conditions on the decrease in the battery energy of the vehicle while traveling?
- 3. How does the consideration of powertrain and regenerative braking models impact the estimates of decrease in the battery energy of the vehicle?
- 4. How do partial charging and vehicle exit from the platform influence the platform's profitability?

Overall Analysis Framework

- Stage 1 Vehicle dynamics model to calculate the energy drawn from the battery per unit distance for different traffic conditions
- Stage 2 Open queuing network to model the EV-sharing platform and its operations
- Stage 3 Optimization model to determine the optimal system parameters

EV Modeling

Tractive force from the powertrain (electric motor) needs to overcome 4 resistive forces:

- 1. Rolling resistance
- 2. Aerodynamic drag
- 3. Grade resistance
- 4. Inertia

Single motor drive configuration was considered in this study.

Motor modeling:

- 1. Ideal motor characteristics used to represent continuous torque-speed profile.
- 2. Efficiency map used to include motor and inverter losses.

Regenerative braking modeling:

- 1. Series regenerative braking for optimum braking performance chosen.
- 2. Braking strategy ensures ideal brake force distribution is followed, hence ensures safety.

For front-wheel drive configuration, distribution between friction brakes and motor is given by

$$\begin{split} F_{bf,fric}(t) &= \begin{cases} 0, & F_{bf,ideal}(t) < F_{regen,max}(t) \\ F_{bf,ideal}(t) - F_{regen,max}(t), & F_{bf,ideal}(t) \geq F_{regen,max}(t) \end{cases}, \\ F_{br,fric}(t) &= F_{br,ideal}(t), \end{split}$$

where

$$F_{regen,max}(t) = \begin{cases} -\frac{\tau_{max}(\omega(t))GR}{r\eta_t}, & \omega(t) \ge \omega_{base,cont} \\ 0, & \omega(t) < \omega_{base,cont} \end{cases}.$$

Case Study - Nissan e-NV200 Evalia

Specifications of vehicle considered:

- Light vehicle with single motor front-wheel drive configuration.
- Battery modelled using an Open Circuit Voltage vs State of charge curve and an internal resistance.
- Constant accessory power consumption of 1.4 kW considered.

Specification	Meaning	Value
M_{laden} (kg)	Mass of the fully laden vehicle	2250
$M_{unladen}$ (kg)	Mass of the fully unladen vehicle	1592
L (mm)	Wheelbase	2725
$l_{f,laden}$ (mm)	Distance of CG from the front axle center for the fully laden vehicle	1429.12
v_{max} (km/h)	Maximum longitudinal vehicle speed	123
r (mm)	Tyre rolling radius	310.75
E_{rating} (kWh)	Energy rating of the fully charged battery	40
n_{cells}	Total number of cells	192
Q_{cell} (Ah)	Rated cell capacity	56.3
$R_{int} (\Omega)$	Internal cell resistance	0.002
P_{cont} (kW)	Continuous power rating of the motor	80
τ_{cont} (Nm)	Continuous torque rating of the motor	254
ω_{max} (rpm)	Maximum angular speed of the motor	10000
$\omega_{base,cont}$ (rpm)	Continuous base angular speed of the motor	3008
GR	Gear ratio of the final drive	9.301
$h_{laden} \text{ (mm)}$	Height of CG from the ground for the fully laden vehicle	800
C_d	Coefficient of drag	0.35
A_f (m ²)	Frontal projected area	2.8043
$\rho (kg/m^3)$	Mass density of air	1.225
η_t	Transmission efficiency	0.95
f_r	Coefficient of rolling resistance	0.01

EV Model Validation and AVL CRUISE Results

Model Validation:

- Vehicle simulated using the World Harmonized Light Vehicle Test Procedure.
- Energy consumption obtained with EV model (= 0.2633 kWh/km) matched closely the quoted value by Nissan (= 0.2591 kWh/km).

Traffic conditions considered:

Traffic	Drive cycle	Parameters				
condition	Dire cycle	$s_{cycle} (km)$	t_{cycle} (s)	$v_{max,cycle} (km/h)$	$v_{avg,cycle} (km/h)$	
Low	HWFET	16.45	765	96.40	77.57	
Medium	UDDS	12.07	1369	91.20	31.50	
High	ECE-15	1.013	195	50	19	

Results from AVL CRUISE:

 $\Delta E_{battery}$ over HWFET, UDDS, and ECE-15 are 0.2375, 0.2725, and 0.2771 kWh/km.

Comparison with simplified EV model:

- Net efficiency factor of 80%.
- 20% regenerative braking factor.

 $\Delta E_{battery}$ over HWFET, UDDS, and ECE-15 are 0.2233, 0.2605, and 0.2593 kWh/km.

Battery energy vs charging time:

Queuing Network of the EV-sharing Platform

Optimization Model for Setting Policy Parameters

- Mixed-integer nonlinear optimization problem (MINLP)
- Decision variables:
 - Number of chargers at each charging station
 - Distribution of external arrival of EVs to different charging stations
 - EV queue length for charging
 - EV queue length for trip assignment
 - Queuing node utilization
 - EV flow rates between different queuing nodes

Optimization Model for Setting Policy Parameters

- Objective function: Maximize the platform's annual profit
 - Revenue from customer trips
 - Charger installation cost
 - Waiting cost of the EVs at charging stations
 - Repositioning cost of the EVs to charging stations

Constraints:

- Sum of fractions of repositioned EVs of a particular vehicle class to different stations is 1
- Flow-balance constraints at the queuing nodes
- Queuing node utilization constraints
- Queue length constraints
- Capacity constraints for the charging station

Solution Method and Results

- MINLP is nonlinear and non-convex due to integer variable and fractional constraints with multi-linear cubic and quadratic terms.
- Constraint for the decision variable EV queue length for charging is causing multilinear cubic terms.
- Bound-based heuristic
 - Overestimate the decision variable to obtain the lower bound of the optimal profit
 - Underestimate the decision variable to obtain the upper bound of the optimal profit
- The optimality gap between the lower and upper bounds from the heuristic, is found to be less than 0.5%.

Managerial Insights

Contributions and Future Directions

- We propose an integrated analytical framework to address the operational and infrastructural challenges faced by an EV-sharing platform.
- We provide a bound-based heuristic to solve a mixed-integer nonlinear optimization model with fractional constraints and multi-linear cubic terms.
- Our analysis provides various operational insights for the policy makers of the EVsharing platform.
- Possible extensions:
 - Heterogeneous EV fleet with different vehicle loading conditions
 - A more specific and realistic vehicle speed profile by collecting real time data
 - Joint determination of optimal partial charging probabilities and target energy level for partial charging along with the number of chargers

References

- D. K. George and C. H. Xia, "Fleet-sizing and service availability for a vehicle rental system via closed queueing networks," European journal of operational research, vol. 211, no. 1, pp.198–207, 2011.
- D. Roy, J. A. Pazour, and R. De Koster, "A novel approach for designing rental vehicle repositioning strategies," IIE Transactions, vol. 46, no. 9, pp. 948–967, 2014.
- F. Guo, J. Yang, and J. Lu, "The battery charging station location problem: Impact of users' range anxiety and distance convenience," Transportation Research Part E: Logistics and Transportation Review, vol. 114, pp. 1–18, 2018.
- L. Chen, L. He, and Y. H. Zhou, "Managing electric vehicle charging: An exponential cone programming approach," Available at SSRN, 2020.
- T. D. Chen, K. M. Kockelman, and J. P. Hanna, "Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions," Transportation Research Part A: Policy and Practice, vol. 94, pp. 243–254, 2016.
- B. Loeb, K. M. Kockelman, and J. Liu, "Shared autonomous electric vehicle (saev) operations across the Austin, Texas network with charging infrastructure decisions," Transportation Research Part C: Emerging Technologies, vol. 89, pp. 222–233, 2018.
- L. He, H.-Y. Mak, Y. Rong, and Z.-J. M. Shen, "Service region design for urban electric vehicle sharing systems," Manufacturing & Service Operations Management, vol. 19, no. 2, pp. 309–327, 2017.
- Y. Hua, D. Zhao, X. Wang, and X. Li, "Joint infrastructure planning and fleet management for one-way electric car sharing under time-varying uncertain demand," Transportation Research Part B: Methodological, vol. 128, pp. 185–206, 2019.
- L. He, G. Ma, W. Qi, and X. Wang, "Charging an electric vehicle-sharing fleet," Manufacturing & Service Operations Management, 2020.
- S. Shao, W. Guan, and J. Bi, "Electric vehicle-routing problem with charging demands and energy consumption," IET Intelligent Transport Systems, vol. 12, pp. 202–212, 2018.
- F. Dandl and K. Bogenberger, "Comparing future autonomous electric taxis with an existing free-floating carsharing system," IEEE Transactions on Intelligent Transportation Systems vol. 20, no. 6, pp. 2037–2047, 2019.
- F. Alesiani and N. Maslekar, "Optimization of charging stops for fleet of electric vehicles: A genetic approach," IEEE Intelligent Transportation Systems Magazine, vol. 6, pp. 10–21, 2014.
- T. Chen, B. Zhang, H. Pourbabak, A. Kavousi-Fard, and W. Su, "Optimal routing and charging of an electric vehicle fleet for high-efficiency dynamic transit systems," IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3563–3572, 2018.

Thank You!

Questions/Comments?