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Abstract 

Around 24% of direct CO2 emissions are contributed to by the transportation sector due to fossil 
fuel consumption, in which nearly three-fourth are contributed by the road vehicles. The use of 
electric vehicles (EVs) has gained prominence around the world as a response to these adverse 
environmental impacts of fossil-fuel usage and rapidly depleting fossil-fuel reserves. However, the 
penetration of EVs is very less and around only 1% of the global fleet of cars is electrified. The 
issues that hinder the large-scale adoption of EVs are the customer’s range anxiety, the cost of the 
electric vehicles, and inadequate charging infrastructure, especially in the case of non-autonomous, 
private consumer markets.  
 
With better charging infrastructure, it is anticipated that driverless vehicles will become an 
increasingly sustainable option in the future and consumers will abandon their personal vehicle 
ownership and leverage shared vehicles for mobility. Further, ABI Research forecasts that there 
will be more than 11 million shared driverless vehicles operating on the roads globally by 2030, 
serving an average of 64 users per shared driverless vehicle 
(https://www.abiresearch.com/press/driverless-cars-and-shared-mobility-transform-trad/).  
 
Today, vehicle sharing platforms operating autonomous electric vehicles (AEVs) such as RideCell 
(https://ridecell.com/solutions/autonomous-vehicles/)   provide a more efficient and eco-friendly 
alternative mode of urban transportation. Additionally, an AEV fleet ensures 24-by-7 operation 
with platform-governed specific and optimized operational policies. It also removes the driver’s 
discretion for ride refusal/acceptance. Studies have shown how replacing existing car-sharing 
systems with an autonomous taxi system could reduce the number of vehicles required by 2.8 to 
3.7 times to satisfy the same demand, which in turn reduces the fares. However, autonomous 
electric vehicle sharing platforms face various new strategic and operational decisions. While the 
strategic decisions include decisions such as the optimal number and location of charging stations, 
and the number of charging points per station; the operational decisions include decisions such as 
customer-vehicle allocation, distribution of vehicles to the stations and charging policies (the type 
of charging - full vs. partial, and the threshold energy level of the AEV to be considered for 
charging). 
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We analyze the decisions using a three-stage sequential modeling approach. We consider a station-
based EV Sharing system, in which customers are picked-up and dropped-off by the AEVs at 
charging stations only. AEVs are classified based on their energy level. If the energy level of an 
arriving AEV at the charging station is below a threshold value, it undergoes either partial or full 
charging. The platform broadcasts the availability of the AEVs to the customers at different 
charging stations. An AEV is classified as available for the customer trip only if its energy level 
is above the charging threshold, the same as used for the charging decision. We also consider 
different traffic conditions which affect the battery consumption as well as the travel time of AEVs. 
 
 
In the first stage, we develop a detailed vehicle simulation model that characterizes longitudinal 
vehicle dynamics while considering standardized drive cycles. The output of the simulation model 
serves as an input to the second-stage queuing network model. The simulation model uses vehicle 
parameters such as mass, wheelbase, maximum speed, CG location, and battery energy rating to 
extract time and energy consumption for traveling from one charging station to another under 
different traffic conditions, by using AVL CRUISETM, a commercial powertrain simulation 
software. These time and energy parameters form the input to the second stage queuing network 
model, where we analyze the performance of the platform operations using a multi-class open 
queuing network with class switching, and derive the queue length and utilization of the queuing 
nodes. The output from the second stage along with the network flows form the input to the third-
stage model. In the third-stage, we propose a mixed-integer nonlinear optimization program which 
provides the profit-optimal number of chargers at each charging station, as well as, the vehicle 
repositioning fractions. We develop a heuristic to obtain the performance bounds by simplifying 
the model constraints. The numerical experiments suggest that the bounds are reasonable, and the 
optimal value of the decision variables lie within 6% of the bounds. 
 
To summarize, we contribute to the literature and practice by (1) considering detailed vehicle 
dynamics including battery charging and energy consumption under different drive cycles (traffic 
conditions), (2) considering different charge upto policies - full and partial charging, and (3) 
integrating vehicle dynamics with platform’s operational and infrastructural policy parameter 
optimization.  
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